FOLLOW ME.......... T.Q

DAN HARI MALAYSIA UCAPAN IKLAS DARI 9W2PHJ/PRPHJ

Ahad, 17 Oktober 2010

VIEWS OF JUPITER AND THE SUN


The gibbous phase of Jupiter's moon Europa. The robot spacecraft Galileo captured this image mosaic during its mission orbiting Jupiter from 1995 - 2003. Evidence and images from the Galileo spacecraft, indicated that liquid oceans might exist below the icy surface.

Jupiter is in the news again, this time because its "Baby Red Spot" - a storm less than a year old - appears to have been swallowed up by the massive storm known as the Great Red Spot. This is good occasion to share some of the best photographs of Jupiter and its larger system of rings and moons, as seen by various probes and telescopes over the past 30 years.

Jupiter's moon Io floats above the cloudtops of Jupiter in this image captured January 1, 2001. The image is deceiving: there are 350,000 kilometers - roughly 2.5 Jupiters - between Io and Jupiter's clouds. Io is about the size of our own moon

This image of Jupiter's moon Europa rising above Jupiter was captured by the New Horizons spacecraft in February just after it passed Jupiter on its way to Pluto and the outer Solar System.

This view of the icy surface of Jupiter's moon, Europa, is a mosaic of two pictures taken by the Solid State Imaging system on board the Galileo spacecraft during a close flyby of Europa on February 20, 1997. The area shown is about 14 kilometers by 17 kilometers (8.7 miles by 10.6 miles), and has a resolution of 20 meters (22 yards) per pixel. One of the youngest features seen in this area is the double ridge cutting across the picture from the lower left to the upper right. This double ridge is about 2.6 kilometers (1.6 miles) wide and stands some 300 meters (330 yards) high.

A composite of several images taken in several colors by the New Horizons Multispectral Visual Imaging Camera, or MVIC, illustrating the diversity of structures in Jupiter's atmosphere, in colors similar to what someone "riding" on New Horizons would see. It was taken near the terminator, the boundary between day and night, and shows relatively small-scale, turbulent, whirlpool-like structures near the south pole of the planet. The dark "holes" in this region are actually places where there is very little cloud cover, so sunlight is not reflected back to the camera.

This image, acquired during Galileo's ninth orbit around Jupiter, shows two volcanic plumes on Io. One plume was captured on the bright limb or edge of the moon, erupting over a caldera (volcanic depression) named Pillan Patera. The plume seen by Galileo is 140 kilometers (86 miles) high, and was also detected by the Hubble Space Telescope. The second plume, seen near the terminator, the boundary between day and night, is called Prometheus. The shadow of the airborne plume can be seen extending to the right of the eruption vent.

A part of the southern hemisphere of Io, seen by the spacecraft Voyager at a range of 74,675 km. In the foreground is gently undulating topography, while in the back-ground are two mountains with their near faces brightly illuminated by the sun. The mountain in the right is approximately 150 km across at its base and its height is probably in excess of 15 km which would make it higher than any mountain on Earth.

A volcanic plume rises over 300 kilometers above the horizon of Jupiter's moon Io in this image from cameras onboard the New Horizons spacecraft. The volcano, Tvashtar, is marked by the bright glow (about 1 o'clock) at the moon's edge, beyond the terminator or night/day shadow line. The shadow of Io cuts across the plume itself. Also capturing stunning details on the dayside surface, the high resolution image was recorded when the spacecraft was 2.3 million kilometers from Io. Later it was combined with lower resolution color data by astro-imager Sean Walker to produce this sharp portrait of the solar system's most active moon.

Jupiter's moon Io, seen by NASA's Galileo spacecraft against a backdrop of Jupiter's cloud tops, which appear blue in this false-color composite.

A mosaic of Jupiter's ring system, acquired by NASA's Galileo spacecraft when the Sun was behind the planet, and the spacecraft was in Jupiter's shadow peering back toward the Sun.

The first color movie of Jupiter from NASA's Cassini spacecraft shows what it would look like to peel the entire globe of Jupiter, stretch it out on a wall into the form of a rectangular map, and watch its atmosphere evolve with time. The brief movie clip spans 24 Jupiter rotations between Oct. 31 and Nov. 9, 2000. The darker blips that appear are several moons and their shadows.

An image of the leading hemisphere of Ganymede seen by NASA's Galileo spacecraft. Many fragmented regions of dark terrain split by lanes of bright grooved terrain cover the surface. Several bright young craters can be seen, including a linear chain of craters near the center of the image which may have resulted from the impact of a fragmented comet, similar to comet Shoemaker-Levy/9 which hit Jupiter in 1994.

The area of Nicholson Regio and Arbela Sulcus illustrates many of the diverse terrain types on Jupiter's moon Ganymede, as seen in this image taken by NASA's Galileo spacecraft. The image covers an area approximately 89 by 26 kilometers (55by 16 miles).

Jupiter's Great Red seen by NASA's Voyager spacecraft. July, 1979 Around the northern boundary a white cloud is seen, which extends to east of the region. The presence of this cloud prevents small cloud vortices from circling the spot in the manner seen in the Voyager 1 encounter. Another white oval cloud (different from the one present in this position three months ago) is seen south of the Great Red Spot. This image was taken on July 6, 1979 from a range of 2,633,003 kilometers. The Red Spot is 20,000 km across

This true color mosaic of Jupiter was constructed from images taken by the narrow angle camera onboard NASA's Cassini spacecraft on December 29, 2000, as the spacecraft neared Jupiter during its flyby of the giant planet. It is the most detailed global color portrait of Jupiter ever produced. Although Cassini's camera can see more colors than humans can, Jupiter here looks the way that the human eye would see it.

NASA's STEREO satellite captured the first images ever of a collision between a solar "hurricane", called a coronal mass ejection (CME), and a comet on April 4, 2007. The collision caused the complete detachment of the comet's plasma tail. Comets are icy leftovers from the solar system's formation billions of years ago. They usually hang out in the cold, distant regions of the solar system, but occasionally a gravitational tug from a planet, another comet, or even a nearby star sends them into the inner solar system. Once there, the sun's heat and radiation vaporizes gas and dust from the comet, forming its tail. Comets typically have two tails, one made of dust and a fainter one made of electrically conducting gas, called plasma.

The Sun is now in the quietest phase of its 11-year activity cycle, the solar minimum - in fact, it has been unusually quiet this year - with over 200 days so far with no observed sunspots. The solar wind has also dropped to its lowest levels in 50 years. Scientists are unsure of the significance of this unusual calm, but are continually monitoring our closest star with an array of telescopes and satellites. Seen below are some recent images of the Sun in more active times.


A sweeping prominence, a huge cloud of relatively cool dense plasma is seen suspended in the Sun's hot, thin corona. At times, promineces can erupt, escaping the Sun's atmosphere. Emission in this spectral line shows the upper chromosphere at a temperature of about 60,000 degrees K (over 100,000 degrees F). Every feature in the image traces magnetic field structure. The hottest areas appear almost white, while the darker red areas indicate cooler temperatures.

Detailed closeup of magnetic structures on the Sun's surface, seen in the H-alpha wavelength on August 22, 2003.

Image of an active solar region taken on July 24, 2002 near the eastern limb of the Sun. The image highlights the three-dimensional nature of the photosphere when seen at these large angles. The structures in the dark sunspots in the upper central area of the image show distinct elevation above the dark "floor" of the sunspot. The height of the structures has been estimated by Dr. Bruce Lites of the High Altitude Observatory to be between 200 and 450 km. The smallest resolvable features in the image are about 70 km in size. There are also numerous bright "faculae" visible on the edges of granules that face towards the observer.

The total solar eclipse of February 16, 1980 was photographed from Palem, India, by a research team from the High Altitude Observatory of the National Center for Atmospheric Research. The photograph of the solar corona was taken with a camera system developed by Gordon A. Newkirk, Jr. This specialized instrument photographs the corona in red light, 6400 A -- through a radially graded filter that suppresses the bright inner corona in order to show the much fainter streamers of the outer corona in the same photograph.

The planet Venus is seen by NASA's TRACE satellite, at the start of its transit across the sun on June 8, 2004.

A view of a sunspot and granules on the Sun's surface, seen in the H-alpha wavelength on August 4, 2003.

Solar flares produce seismic waves in the Sun's interior that closely resemble those created by earthquakes on our planet. On May 27, 1998, researchers observed this flare-generated solar quake that contained about 40,000 times the energy released in the great earthquake that devastated San Francisco in 1906, equivalent to an 11.3 magnitude earthquake, scientists calculated. Over the course of an hour, the solar waves traveled for a distance equal to 10 Earth diameters before fading into the fiery background of the Sun's photosphere. Unlike water ripples that travel outward at a constant velocity, the solar waves accelerated from an initial speed of 22,000 miles per hour to a maximum of 250,000 miles per hour before disappearing.

Hinode (formerly known as Solar-B) successfully captured a massive solar flare on 13 December 2006. It was one of the largest flares occurring in that period of solar activity minimum.

The image shows the corona for a moderately active Sun, with some (red) hot active regions in both hemispheres, surrounded by the (blue/green) cooler plasma of the quiet-Sun corona. Notice also the north polar-crown filament, the trans-equatorial loops, and the coronal hole in the south-east (lower-right) corner of the image and the smaller one over the north pole. This image shows the solar corona in a false-color, 3-layer composite: the blue, green, and red channels show the 171Å, 195Å, and 284Å wavelengths, respectively (most sensitive to emission from 1, 1.5, and 2 million degree gases).

A view of an irregular-shaped sunspot and granules on the Sun's surface, seen on August 22, 2003.

On November 8, 2006, Mercury is seen, beginning a transit in front of the Sun.

This TRACE 171Å-wavelength image from November 11, 2006 shows a sizeable active region at the east limb of the Sun (rotated clockwise 90 degrees so north is to the right) just as it rotates onto Earth-facing hemisphere. Notice the low-lying dark structures of filaments at the leading edge of the region, some "levitating" dark material on the right-hand side of the region, and the small ephemeral region towards the lower right.

The Sun, observed on May 22, 2008. With the Sun persisting in a near-minimal state of activity, only a few small regions of some activity are seen on the disk. The cell-like appearance is formed by the multitude of small clusters of magnetic flux that are collected in the downflow regions of the supergranular network of convective motions.

TRACE 171Å image of an erupting solar filament above Active Region 9077 on July 19, 2000. Filaments are concentrated bundles of magnetic field filled with relatively cool gas, suspended in the solar corona. When they become unstable, they can erupt, triggering coronal mass ejections and solar flares. The dark material here is relatively cool, while the bright material is hotter than a million degrees. As this hot material cools, it condenses and drains down the lines of magnetic field in the corona much like beads moving along a wire, a process some scientists refer to as "coronal rain."

This LASCO C2 image, taken 8 January 2002, shows a widely spreading coronal mass ejection (CME) as it blasts more than a billion tons of matter out into space at millions of kilometers per hour. The C2 image was turned 90 degrees so that the blast seems to be pointing down. An EIT 304 Angstrom image from a different day was enlarged and superimposed on the C2 image so that it filled the occulting disk for effect

Detailed closeup of magnetic structures on the Sun's surface, seen in the H-alpha wavelength on August 22, 2003.

NASA's STEREO (Ahead) spacecraft observed this visually stunning prominence eruption on Sept. 29, 2008 in the 304 wavelength of extreme UV light. It rose up and cascaded to the right over several hours, appearing something like a flag unfurling, as it broke apart and headed into space. The material observed is actually ionized Helium at about 60,000 degrees. Prominences are relatively cool clouds of gas suspended above the Sun and controlled by magnetic forces.

A transit of the Moon across the face of the Sun on February 25, 2007 - but not seen from Earth. This sight was visible only from the STEREO-B spacecraft in its orbit about the sun, trailing behind the Earth. NASA's STEREO mission consists of two spacecraft launched in October, 2006 to study solar storms. STEREO-B is currently about 1 million miles from the Earth, 4.4 times farther away from the Moon than we are on Earth. As the result, the Moon appears 4.4 times smaller than what we are used to.

On September 30, 2001, TRACE observed an M1.0 flare in an active region very near to the solar limb. Fragments of a prominence hovered above the regions, with filamentary dark (relatively cool) material moving along the field lines, which then spread to form this dragon-like bright outline.

1 ulasan: